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FOREWORD

The work described in this report was carried out
as part of a prugram to investigate the effects of mass
transfer on the stability of re-entry type vehicles. In
addition to the theoretical analysis reported here, an
experimental investigation was conducted in the FluiDyne
Hypersonic Wind Tunnel at a nominal Mach number of 11.
It involved frec oscillation tests with ablating and
blowing models using a specially-designed, sting-mounted
air bearing with the necessary contrecl and recording
apparatus. The overall program was supported by the
Advanced Research Projects Agency. Ballistic Missile
Defense Office, Penetration Aids Branch, and was tech-
nicaily administered by the Fluid Dynamics Branch cf
the Offica of Naval Research. The author wiches to
acknowledge the essential centribution of Dr. James S.
Holdhusen, the co-author of an earlier report on the
sub ject which laid the foundation for the present work.
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EFFECTS OF ABLATICN
ON_ THE
PITCHING MOMENT DERIVATIVES
OF
CONES IN HYPERSONIC FLOW

Shukry K. lbrahim

FluiDyne Engincering Corporation
Minneapolis, Minnesota

ABSTRACT

This work presents a method of calculating the static
and dynamic pitching moment derivatives at hypersonic speeds
for pointed or slightly blunted cones performing small-
amplitude, single~-degree-of~freedom oscillations about an
arbitrary pivotal axis, taking into account the effects of
ablation or blowing over all or specified portions of the
cone surface. The study is motivated by the need for de~-
tailed understanding of the large destabilizing changes
in the pitching oscillaticons sometimes observed on re~-entry
vehicle test flights.by developing analytic expressions
which describe the role and relative importance of the
relevant parameters.

An early report or the subject' with a limited dis-
tribution was presented in April 1966. Significant im-
provements have since been made to the earlier paper in
that the effects of skin friction, as modified by ablation
or blowing, on the static and dynamic pitching moment de~
rivatives are now included. Other refinements include the

-
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choice of a body coordinate system centered at the cone
apex, or virtual apex for blunted cones, leading to a
more unified approach to the effects of ncse bluntness
and the relaxation of certain geometric restrictions.

The analysis is restricted to considerations of rigid
body motions at low values of the reduced frequency param-
eter, %ﬁ , and quasi-steady conditions are pcstulated.

The formulation adopted is sufficiently general and per-
mits a great deal of latitude in the choice of parameters
that apply to specific cases. The primary independent
quantities, other than the cone angle, nose bluntness and
center of gravity location are tre distribution, intensity
and phase-shift of the ablation or blowing rate. In the
analysis, the ablation gases leaving the body are assumed
to produce the following two-fold effect:

1) a deflection of the external flow which produces
a chauge in the local static pressure coefficient
readily calculatied by the Newtonian flow theory aru

2) a change in the local skin-friction coefficient.

These inviscid and viscous effects are treated separately,
and their individual contributions to the static and dy-
namic derivatives are calculated so that they may be com-
pared with, and later added to, the static and dynamic
derivatives without ablation. The resulting expressions
corifform to tle observed sign and order of magnitude of
experimental observaticns. Under certain restrictions
clearly delineated, a very simple relation, involving
enly the reduced frequency parameter and the phase-shift

-2-
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angle, is shown to exist between the dynamic and static
moment derivatives due to ablation.

I1lustrative examples showing detailed calculation
procedures and typical results for three diffe-ent abia-
tion configurations under both laminar and turbulent
boundary layer conditions are presented.
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1. INTRODUCTION AND LITERATURE REVIEW

It is known that ablation may produce order-of-
magnitude changes in the dynamic pitching derivatives
of cones in hypersonic flow. Such chianges have been .
observed both in free flight and in wind tunnel tests”
with ablation. In examining the dynamic stability of an
ablating hypersonic vehicle, one is faced with very com-
plex aero~-thermo~chemical phenomena involving uasteady
heat and mass transfer processes, multi-component boundary
layer affects, different mechanisms of decomposition of
the ablating material, and finally, changes in shape and
mass distribution resulting from the removal of ablated
material.

Any analysis «. reasonably wide application entails,
of necessity, a number of simplifications dictated either
by the underlying assumptions of the theories involved cr
by the desire to reduce the necessary computational work.
The latter restrictions may be relaxed at the expense of
additianal computational labor but the former are intrin-
sic to the nature of the theoretical approach adopted.

From the funcdamental viewpoint, the present analysis
uses the classical concepts of dynamic stabiiity theory
such as those of stability derivatives and the principle
of superposition implying the assumption of linearity.

It also rests on the assumptions of the Newtonian flow
theory and of quasi-steady flow conditions.

From the practical computationai viewpoint, a num-
ber of simplifying assumptions are made in the in:erest
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of clarity and simplicity. Only the primary effects tsk-
ing place in the ablating region are considered and second-
ary effects as might ve induced on the tady upstream or
downstream of the ablating region are ignored. The con-
vective heat transfer rate is assumed to be dominant so
that radiation effects may be ignored. Possible changes

in shape or mass distribution resulting from abiation are
also ignored, and the dynamic stability effects of ablation
on the small, spherical nose cap are neglected. !n prin-
ciple, there are no difficulties n relaxing anv or all of
these simplifying assumptions.

The opsn literature treating sp2cifically the complex
interactions between the chenomena of ablation and the ve-
hicle dynamic stability characteristics is quite limited
and of very recent vintage]-e. By contrast, the literature
on some of the underlying problem areas is quite axtensive
and only a representative number of references in the areas
of high speed heat and mass transfer7-20, stability charac-
teristics at hypersonic speedSZI-zs, ablation processes

and materia! pro,caertieszs""7 are 1'sted here.
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2. PITCHING MOMENT DERIVATIVES FOR NONABLATING CONES

2.1 Geometric Considerations

The cone geometry is illustrated in Fiyure 1. The
origin of the cylindrical coordinate system (x, r, ¢)
is taken at the apex of the cone. For blunted cones,
the origir is taken at the virtual apex as shown.

The significance of the symbols L, L0 , L] » Xg
ry» g > and 6 is illustrated in Figure 1. The nose
bluntness ratio is defined by:

The following relaticns apply to a right circular cone
with a spherical nose cap:

r = xtané , rg = Ltan6 , d = 2L.tan®

L (1)

rN(l-sinze)
5 =1 sec®

Ll = sinb » &=

2.2 Loca! Pressure Coefficient Without Ablation, Cp(o)

The local pressure coefficient for hypersonic flow
for a cone is based on Newton's simple impact theory
{valid for M - =) to be modified by a corraction factor

. . or...38 .

N given in Truitt by the expression
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y-1 71 y+1
n=1+-—=7(7* (2)
where Y is the ratio of specific heats
M, is the free stream Mach number
and A represents the angle between the tangent

to the local surface and the free stream
direction.

Under these conditions, the local pressure coefficient is
1iven by:

Cp(o) = 2A2n . (3)

The local deflection angle, & , is expressed in terms

of the cone angle 6 and the local effective angle of .
attack, LT composed ot the instantaneous angle of at-
tack and the angle induced by the pitching velocity q :

q(x-xo)

G=G+-——U———-— .
e [ ]

Introducing the dimensionless quantities:

X - L
X =1, o ='f2 s Ly ='tl
th a, =a+ 8 (3-5) =a+ g (M°) (4)

Following the earlier analysis], we use

A=06-a sing (5)

-7-
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and obtain for the pressure coefficient with no ablation
using Egs. (3) and (5):

¢ (o) = 2n(e - 2, sin 22 . 16)

2.3 Pitching Moment Coefficient and Derivatives for
Nonablating Cone Surface

The differential pitching moment coefficient about
the pivotal axis located at X for a nonablating conicel
element at x is given by

o=n1/2

dCM(o,c) ='I§H [r sind + (x-xo)cose]cp(o)sinm ds (7)

o="1/2

where the cone base aresa AB and base diameter d are
used for reference. Noting that AB = an2 , d = 2rB
and that the element of area dS on the cone surface is

given by dS = ggzgx =X sind dp dx , then by substitution

cos" @
from Eq. (1) and introducing the dimensionless quantities

X , §° , and [] , there is obtained from Eq. (7):

dCylo,c) = ——topm fﬂ/z (%2sec?8 - %x_) C_{o) sinp dp dx
0,c) = x“sec 0 - xx o) sing do dx
M ~mtan“8 *-n/2 o P

The moment coefficient CM(o,c) , contributed by the
nonab'ating cone surface, requires an integration with
respect tc x from the shoulder of the cone near the
nose, i.e., X = E] to the -one base, x =1 .
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"/222-- -
CM'o,c) ————17— j f (x sec“8 - xxo) Cp(o) sing dg dx

ntan®8

Thus, the moment coefficient depends on the geometrical
quantities 8 , t] , and ;o and on the distribution of
the pressure coefficient with respect to the variables

@ and x . The nose vluntness ratio, & , does not ap-
pear explicitly in Eq. (8) but its effect is incorporated
in the lower limit of integration, [] .

It should be point2d out that, except for pointed
cones, the numerical values of ;o , as defined in the
present and in the previous report! will be different
for the same geometrical configuration and axial loca-
tion so that the calculated moment coefficicnts and their
derivatives cannot be strictly compared with ;o as the
independent variabie.

By substitution from Cq. (6) into Eq. (8), there
follows:

n/ 2
c (o,c)_ -—J%y— IL -Zsecze - ?io)(e-aesinw)zsinm dp dx
mtan” @

The expansion of Eg. (9) yield terms involving sing and
its powers up to sin3¢ . Since the integrals of the odd
powers of sing with limits ¢ = -n/2 and +n/2 will
vanish and since

jn/?

. 2 i
sin“g dyp =
-n/2 2

(8)

(9)
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Then, after integration of Eg. (9) with respect to o
and substitution for a from Eq. (4), there is obtained
for the moment coefficient without ablation

C (o,c) =~ -lljr- I (x sec 9 - xx )dx -

tan

—ﬂLg—-HU— I (x sec2d - xx ) (x- x Jdx . (10)

tan

After carrying out the integrations with respect to x ,
taking appropriate derivatives and using the abbreviations:

I A G - T%
c, = ()sects - (5L, o
and
LA -, -L5
(’T)SGC 6 - (—T—)(sec 6 + ])X + (—T—) (]2)
“here is obtained for the pitching moment derivatives:
_ 216
¢y losc) = - ==, (13)
a tan™ 6
and
C. lo,c) = - —202 ¢ . (14)
Mq ’ an> 6 2

It is observed that, for a given problem, C] and C2 are
constant coefficients, specified by purely geometric fac-
tors, namely, the cone angle 8 , the pivotal axis location

-10-
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;o and the nose bluntness which controls [] . Cy s
linear and C2 is quadratic in §o . For the special
case of a pvinted cone, [] = 0 and the coefficients

C] and C2 become, respectively:

C]'=-é]- secze - -2'- X

and

= 2

2 ]
9+|)X -2' c

2

C2'=-21-sec 9-— (s2c

Figures 2 and 3 illustrate the variati on of C] and C2
with pivotal axis location, ;o , for a 10° half-angle

cone for different values of the bluntness ratio, § .
Figures 4 and 5 present the nonablating static and dynamic
pitching moment derivatives produced bty the conical sur-
face and given by Eqs. (13) and (14).

2.4 Pitching Moment Derivatives of Spherical Nose Cap

The pitching moment c2rivatives contributed by the
spherical nose cap are readily calculated by means of the
Newtonian Impact Theory. From Eq. (9) of Reference 39
but with the cone base a~ea and base diameter as refer-
ence area and reference iength, respectively, the pitch~
ing moment derivatives about ;o » contributed by the
spherical nose are expressed by

P

4
- cos 6 - -
CMa(o,N) -—r%m (x to € tano) (15)

and

-11-
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2 4
Cy (o,N) = - 2C08 8 (3 T -¢ tang)? . (16)
Mq tan~ 9 0 °

These contributions to the static and dynamic pitching
moment derivatives for a bluntness ratio & = .2 are
i lustrated in Figures 4 and 5.

2.5 Pitching Momeant Derivatives of Blunted Cones Without
Ablation

The resultant static and dynamic pitching moment
derivatives for the nonablating spherically blunted cone
are calculated from Egs. (13), (14), (15), and (16) by
addition, so that

_ __ _2m8
c, (o) = CMa(o,c) + CMa(o,N)— -—37- C, +

a tan~ 6

g2cos”o (x - T_ - € tans) (17)
Z tan 8 ‘Yo )

and

C,, (o) =¢C,, (o,c) + C, (0o,N)= - 2nd_ ¢ .

Mq Mq Mq’ tandg 2

2 4

Seos 8z T - tane)® . (18)

tan~ o

The calculated resultant values for a 10° half-angle ccne
with a bluntress ratin & = .2 are illustrated in Figures
4 and 5.

-12-
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3. CHANGES I[N PITCHING MOMENT DERIVATIVES DUE TO ABLATION

3.1 General Considerations

The general approach will be to calculate the convec-
tive heat transfer rate on the local element of conical
surface by suitable transformation of flat plate data at
angle of attack, choosing the latter to correspond with
the local flow inclination. The local rate of mass trans-
fer of ablation gases into the boundary layer may then be
calculated. Either one of the following procedures may
be adopted.

A. To calcuiate the heat transfer rates by means
of accepted calculation procedures assuming no abla-
tion and then apply the concept of an "effective
heat of ablation," Hoes » to account for the thermal
cooling properties of the ablator and ambient flow
conditions,

or
B. To calculate the heat transfer rates taking
into account the alleviation resulting from the
ablating process and then to determine the local
rate of mass transfer from the known thermal pro-
perties of the ablating surface mateiial.

The first method was adopted and led to a simple analysis.
It should be stressed that the effective heat of ablation
is not a material property of the ablator exclusively but
depends on the flow characteiristics as well.

-13-
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In turn, the local mass release at the surface is
assumed to produce a two-fold effect:

1) a local incremental deflection in the flow
which contributes an increment to the local pressure
coefficient, designated by Cp(B) , and readiiy

{ calculated by a simple Newtonian analysis,

and

2) a change in the local boundary layer velocity
profile, more specifically a reduc'ion of the nor-
mail derivative of the velocity at the wal!l surface
and a consequent reduction of the local skin fric-
tion coefficient.

The inviscid and viscous effects are treated separately
and their respective contributions to the pitching moment
coefficient, designated by Cy(B) and C,(f) are cal-
culated independently and later added to the pitching
moment coefficient without ablation, CM(o) , to yield

the resultant pitching moment CM .

3.2 He:t Transfer Rates on Cone Surface Element

Simplified expressions for the rate of convective
heat transfer to a flat plate at angle of attack, a ,
under re-entry cor _ions, have been presented in Refer-
ence 40. For the laminar boundary layer case, the follow-
.Ng expressicn is given:

I

QL X. h _ .306825 Sig a (cos a).s (]9)
B : 775
-] i
o <*m) (1- r: (1) [o1ee .s—h‘: + .314(sina) |

-14-
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where

Qp = convective heatiny rate for 1--inar flow
(BTU/ft%sec)

= coordinate distance along the surface (ft)

altitude density ratio , P
Fs.L.

= free stream velocity (ft/sec)
= enthalpy
= ratio of specific heats
s = subscripts to designate the wall and stag-

Q
[}

T < > C
|

nation values, respectively.
For small values of a , such that
sin @ a@ and cos Q & |

it is shown in Appendix B that one may use the approxi-
mation

.5
sin a {cos a) o

[.186 + .5 ;& + .314(sin a)z];és ) [.186 + .5.25].25

The heat transfer rate, §(F.P.) , on the flat plate may
be converted to that on the cone, §(c) at the same dis-
tance. x by means of the Mangler transformation. For
the lamirar boundary layer case:

ayle) = ¥3 4 (F.P) . (21)

It should be pointed out that, for the cone, the flow
conditions must be those at the edge of the boundary

-15-

(20)




R

FLuiIDYNE ENGINEERING CORPORATION

layer, designated by subscript e , and not the free
stream conditions indicated by subscript o . The dis-
tance, s , along the conical surface for a point with
coordinate x is given by s = x/cc30 = Lx/cos8 . The
instantaneous loca! inclination, A , of the flow which
corresponds to the angle a of the flat place is given
by Eq. (5).

By virtue of Eas. (19), (20), (21), and (5), there
is obtained for the local heat transfer rate on the coni-
cal surface urder laminar flow conditions:

U 3 h “-5 -5 --5
_ .5( e W .3068 _L "“(cos#) 3 =
Gelel =430 (W) (' ) 'ﬁ"> (_y_-__] W s & =
s W
Y [.186 + .5 2]
s
_ =5
C A(Lx) (22)
where ithe coefficient CL is given by
u .3 h .5
_ .5 e W .3068 {cos 8)
¢y =3 0" (75%0) (1 - Tf;) E1)-75 7 (23
Y [.186 + .5 2]
hy-

It is determined by the geometric configuration and the
flow characteristics.

The local heat transfer rate on the conical surface
under turbulent boundary layer conditions may be caiculated
along similar lines. Reference 40 gives the simplified
heating equation for the flat plate at angle of attack for
the turbulent case as

-16-
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ﬁ X.2 ].6 .8
t " _ 3.7 {sin a) {cos a) (24)
U3 hov — o(Y=1Ye7 h 2.1
8= W ( ) 7 o i 1
) 1 - Y 107 4+ .5 + .303(sina)
(omm) ( 1;;) [ Ty J
It is shown in Appendix B that, for small values of a ,
one may use the approximation:
( )1.6( ).8 1.6
sin a cosS a a
[ 197 "W, 303 )2]°7 T 197 + .5 hW]J )
L] + L ] + . 3 sin a L] + * \,
55; L 'ﬁ's‘
The Mangler relationship for this case yields
&t(c) = 1.14 qt (F.P.} . (26)
Fcllowing the same procedure as before, there is obtained
for the local heat transfer rate on the conical surface
under turtulent boundary layer conditinrns:
v .3 h -.2 .2 -.2
- .8( e wy 3.711 L "“{cos9) 1.6
agle) = 1.14 a°%(585) ("h—sf S o7 b
(== [.197 + .5 Y
Y hg
-02
= ¢, a*8(x) (27)
where
u 3 h .2
t - 1000 he/ /v o/ hw-.7
(Y) ["97*'5F;J
-17-
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In order to unify the analysis of the lamirar and
turbulent cases and generalize the appruvach (to encompass
other ablation or blowing configurations), it is converi-
ent to adopt the generel formulatiion

ale) = ¢ am(Lx) (29)

where the coefficient C( represents an intensity factor
the exponent m indicates the angular dependence
and the exponent p denotes the x-wise variation of
the heat transfer rate.

In general m s positive but p is negative; the special
case p =0 implies no direct x-wise dependence of the
heat transfer along the surface.
For the lamiuar case:
C = CL s m=1, and p=-.8
and for the turbulent case

C = Ct s, m=1.6 , and p = -.2

3.3 Mass Transfer and Flow Deflectior us to Ablation

We introduce the dimensionless mass injection param-
eters:

Fe f'E_U_ ?30?

and

-18-
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where v represents the normal velocity
U represents the tangential velocity
p represents the density

and the subscripts w , e , and ® indicate conditions a!
the wall, edge of the boundary layer, and the free stream,
respectively. Applying the concept of the effective heat
of ablatiorn, Heff , We write

[

ale) = fy X Horg = (pwvw) x Hotg

By virtue of Eq. (29), there is obtained

i, = c AmgLizp

eff
. P
Therefore Fo = ¢4 (Lx) (32)
eff pe e
and
P
m -
7 e Ol (33)
eff ‘Pule
It is to be noted that
pQUQ
Fe =50 F, = bF (34)

p. U
where b is used t~ designate the quanti.y B:U: which
e e
may be considered a constant quantity for arny given prob-

lem being a function of the free stream Mach number, M,

and the cone angle.

-19-
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The additional local flow deflection due to abla-
tion mass transfer is designated by B . From the wor«
or Manndl, Thyson and Schurmann42 and o*hers, one may
write to a satisfactery approximation

de” (35]

where 8% designates the displacement thickness of the
boundary layer with ablation or blowing. It is fair to
assume, following Danberg, Winckler and Chang]9 and also
Ericsson and Reding6 that the rate of increase cf the
displacement thickness with distance is linearly related
to the mass injection parameter so that

B=afF . (35)

Experimental evidence regarding the proportionality fac-
tor, a , indicates its dependence on the flow characteris-
tics, more specifically on the wall temperature and flow
Mach number and may range between 6 and 16. For example,
Danberg]8 obtained a value of 8.5 for turbulent flow on a
flat plate at M = 6.7 in air and Studerus43 obtained a
value of 6.2 for turbulent flow over a cone in air at

Mach 19.

By virtue of Egs. (33), (34), and (36), there is ob-
tained: ’

P
6 _2abCaAMLx)

. {37)
BTN

# The author is indebted to Messrs. M. L. Roberts and
J. B. Arnaiz for information and references about the
propertionality factor, a , and its range of variation.
This information was given in prepared comments on -the
author's earlier paper.

~20-
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abCLP

leffpw:w
particular configuration and with this abbreviation, the

expression for the deflection angle due to ablation be-
comes

The quantity, K] = , is a constant for a

P
B =i, &% : (38)

One final consideration remains to be introduced, namely,
that of possible phase-shifts between the instantaneous
local flcw characteristics at the surface and the conse-
quent mass release due to ablation; there may also be
phase-shifts between the local mass release and the ensu-
ing flow deflection. 1In this analysis, the combined ef-
fects of thermal diffusivity and viscous lag are assumed
to produce a time shift, A&t , consicered to be constant
ove~ the full oscillation cycle so that the angular phase-
shift, designated by A will pe given by

\ = 271 At
= S

radians (39)
where T is the period of osciilation.

The determination of the actual phase-shift for a partic-
ular problem requires a separate analysis which may involve
consideration of unsteady boundary layer and temrerature
change, thermal diffusivity properties, etc. Such an
analysis goes beyond the scope of this work. Here, aver-
age phase-shifts involving either a lag or a lead with
respect to the angle of oscillation are assumed and their
possible effects on the stability derivatives are examined.

The expression for the ang'e B takino account of

a phase-shift angle A with respect to the oscillation
angie a becomes:
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B =k, & % gi? . (40)
For an actual re-entry vehicie following a specified
trajectory, the vehicle speed as well as the ambient
atmospheric conditions, e.g., pressure, density, etc.,
will continuously change. However, it is convenient
and quite adequate for the purpose of calculating the
dynamic stability characteristics to assume that the
re-entry cone is moving at some representative velocity
and altitude conditions while undergoing small-amplit.ide,
low-frequency, essentially sinusoidal oscillations about
the zero angle. Such are also the conditions simulated
in the free oscillation wind tunnel tests. In terms of
an initial displacement angle a, and oscillation fre-
quency w , the angle a and pitching velocity q are
expressed by:

a= aoeiwt , q=64= iwaoeiwt = jwa . (41)
Eq. (6) for the pressure coefficient without ablation may
be written in the abbreviated form:

cylo) = 2182 y2 (42)
aesin¢
where y =1 - 5 .
Noting that A = 8y , Eq. (40) becomes
m‘ m=" i

B=K, 8 y x e . (43)
The Newtonian pressure coefficient with ablation may be
expressed by

C =2n (8y + )2 . (44)

P
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Therefore, the pressure coefficient contributed by abla-
tion, Cp(B) , may be written as

C (B =¢C, - C, (o)

P

By virtue of Eqs. (42), (43), and (44), one obtains

P _2p 5.
C,(3) = 4n K o™ 1y IR h 4 n & 202My2M3 TG 21A L (45)
aesinw
For | 5 | < 1, the bincmial series expansinn yields:
. m =~ .
a_sing 4 w_Sinep,n
m _ __e _ _qyngm e
M= (1) =L D) ()
n=0

When this is applied to Eq. (45) there is obtained for
the pressure coefficient contributed by ablation

= mel =P i . nomely (SeSINP\N
Co(B) = an k) o™ XM Y (1) (M) ()

n=0

_<p Lo a singp.n
on K]262m 5 eZl% z:,_])n (im) ( e6 ) . (46)

n=0

3.4 Pitching Mcment Due to Ablation Mass Transfer

The expression for the pitching moment coefficient
contributed by ablation takes the same form as Eq. (8)
but with Cp(B) in the place of Cp(o) and with the
appropriate limits for the x-integration. In other
words
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n/2 2 2 - - . -
Cyy(B) —-————7— j j (x sec” 8-x xo)Cp(ﬁ) sing dp dx . (47)

nmtan® 8 9

Consider first the integration with respect to o :

n/2 n+ | . n n/?2 n/2
. . n-1
(sinp) de =-§iﬂ—%L£9§9 | + = sin" ‘o do
j—n/Z n+ -n/2 n+1 -n/2

The first term on the right-hand side vanishes for the
integration limits -mw/2 and +n/2 and the second term
vanishes only for even values of n ; for odd values,
one gets:

-% for n=1; g7 for n=3 and & for n=235 o
After summation to n =5 and intejration with respect
to ¢ , one obtains:

n/2 . mel_p iN | n %
= f_n/ch(s)smqp dp=4n K8 xe [- lml)F S -

M1y 30 ey

3 lg YDl - (m+l)-mﬂ (T) ...]+

2P - - a a 3
2.2m = 2iA L1} e 2my 3 e
2n K202 ket M-2m 3 (2) - (5 T igd) -

2 5 a 5
(") fprigs) oo ] (48)
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3.4.1 Laminar Boundary Layer o
For the laminar case, m = 1 and only the binomial
coefficients (m+ 1) and 2m will remain in £q. (48) so
that
_P iA 2 _2p 2iA
I]L = -4nn K]Lx e a, - 2nm KlL 8 x e a, (49)

where the subscript 4 has been used to indicate laminar
values. By substitution from Eqs. (4) and (49) into Zq.
(47) there is obtained:

in X )
C,(Bs2) = - 11%1;%"__ §2]<§2+psec29—§ '+p;o)(a+ ST (%-% ) ) d
2. 2iN X
Bl '::;2:3 j;](;mpsecze-;Hzpzo)(m e (%% ) )R - (50
_ 3+p _ 3+p - 24p _ 2+p
Let C4= (x2 5 ; :‘ )sec?e - <,<2 7; :‘ )%, (51)
_ 3+2p _ 3+2p _ 242p _ 2+42p
Cq = <x2 — )2(; Jsec?e - <X2 — ;;l )%, (52}
_ 44p _ 44p _ 3+p _ 3+p
Cg = <x2 Z—+x; )secze - <x2 §+—px] )(sec29+l)§o +
_24p _ 2+p
(X2 = :] )goz (53]
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_ o 4+2p _ 342p _ 3+2p
X - X ’ X - X
_ (2 ] 2, 2 ] _
e C6 - ( 4 + 2p )sec 6 ( 3+ 2p )(sec26+1)xO +
_ 242p _ 242p
(xz - X F 2 . (54)
2+ 2p 0

These four coefficients, constant for any given configura-
tion, are specified by purely geometric conditions, nenely,
the cone angle © , pivotal axis location 20 , the co-
ordinates X4 and ;2 which specify the ablation region
and the exponent p which controls the x-dependence of the

ablation distribution.

After car v g out the integrations in Eq. (50) and
introducing the coefficients C

3 C4 s C5 and C6 there
is obtained:

an K, 20t ;
CylBt) = - ———— {a C3 + 574575 Cs)
tan®8
2, 21N
2n K Be
14 qd
= v, (c C4 + =T Tans CG) : (55)
tan® 6
After using the relations
e'x = cOosA + i sinh , ez'x = cos 2N+ 1 sin 2N and g = iwa

In Eq. (55) and serarating the real and imaginary parts,
there follows
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G

wd .
CylPst) = - m [a(C cosh - gytarg C5 simM)
iawd _ 2U tan -
e (G5 cosh + Egh ¢y sinn) ]
-"t'-a-;]"z—e——— [QC cos 2N - mcs sin <« +

ic wd

U fand (C,‘ cos 2A +—Tan— 4 sin 2)\)] . {56)

The pitching moment derivatives are readily obtained from
Eq. (56) by appropriate differentiation giving

4n K 6 wd

C, (B,t) = - ————7—— (C cosA - =ytzrg © sini)
MQ ? tan ) 2 an@ 5
2n Ky, %6 wd .
'—;;;7;-— (C4 cos 2\ - sy—t5ng Cg SiN 22) (57)
1
and .
J
aC, (B L) 4n K C-cosA
M2 L wd 75
C,, (Bs2) = ( ) C,sinA + =
My’ a(gua) tan?e ( 20 tane)
2n K]LZG 2U wd Cscos Zk
- tanle ( d)(C4S|f‘ 2N + m-—{—a—-ﬂ——} . (58)

Eqs. (57) and (58) express the static and dynamic pitching
moment derivatives produced by ablation for the general

-7~
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laminar boundary lz2yer c2se in terms of the aerothermo-
dynamic quantities 7n and KIL s the gecmetric coeffi-
cients C3 5 C4 R C5 s C6 , and cone angle 8 , the

reduced frequency; %& » and the phase-shift angle, A .

3.4.2 Turbulent Boundary Layer

For the turbulent boundary layer case, m= l.o .
The binomial coefficients of Eg. (48), when evaluated,
give:

(m+l

(mt1) = 2.6 ; 3

) = 416 5 (M) = -.0002

om = 3.2 ; (Zg) = 1.408 ; (22) =-.0113

By substitution of these values in Eq. (48) and noting

o a
that, for |§£| < 1, the terms involving (53) may be

neglected with respect to the other terms, there is then
obtained

/2 . 1.6_p iA a2,
Ilt = I—n 2Cp(B)smcp dp = -5.2mm K]te X e ae(l+ .lZ(irJ )
- 3.2 K, 26202 5T e2iM (1+ 33(33)2) (59)
.2nm Ky, x e Ta .33(3

where the subscript t is now used to designate the tur-
bulent boundary ‘ayer conditions. By substitution from
Eq. (59) into Eq. (47), the expression for the pitching
moment coefficient produced by 2hlation becomes:

~2-
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6N o | :
5.2n K,,8 e "2, 24 2 tp a_ 24
. _ 1t 2 o FR o e 4 s
C(B,t) = —7 .[;( (x sec 6-x xo)ae[l-r.IZ( 2) o
]
2 2.2 2iN =
3.amK, 8 e IZ/_2+29 p _1+2p Yo [ A
X sec 6-x x_Ja | 1+.33(— dx
tan20 ]\ v Bk 0"
(60)

£q. (60) reveais that, unlike the laminar case, the moment
coefficient for the turbulent case is non-linear in ae

For small values of -;3 s say L%Q! <'% the contribution
of the non-linear terms will be very small and has been
reglected here. Under these conditions, there is obtained,
after introducing the expression for a, of Eq. (4) and
the coefficients C3 5 C4 p C5 s C6 given earlier and car-
rying out the integration with respect to X :

CylBst) = - 3 (@ c5 + 2p'%a7s Cs)

tan“@
2.2.2 2iA
3.2n K 8 e
1t . d
- tan28 (a Ly * 37 %anﬁ C6) : (61)

After introducing the complex trigonometric exnressions
e'® and e2'M and using q = iwa into Ea. (61)

and separating the real and imaginary parts, theie fol-

for

lows:
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1 6
5.20n K p
C.,B,t) = ]t al C,cosA - w?—— C.sinA) +
it tanze [ ( 3 20tznd 5 )
43&953 \L COSA + ZQ_%QQ Casinh>]
2.2.2
| S N © [a(c cos 21 - =48 Csin 22) +
iwad - 2Utan® .
L (C6co 2n + S2L808 ¢ 5in 2x)] . (62)

The pitching m~ent derivatives are obtained from Eq. (62)
by appropriate differentiation. Thus

1.6
.21 K o'
1t . wd
C, (Byt) = = —— CLCOSN - mrie—z C snnh)
Yo tanZo ( 3 2Utanb "5
3.2n Klt2 2 2 wd C6 in 2\
. (CcosZ?\-—-U——-e ) (63)
tan 8
and
1.€
5.2n K, .6 CocosA
c = 1t 2U ] wd °5
\’Mq(ﬁ’t) = 3:29 (wd)(c35|n7\ +7U—{E[TT_)
- 2.2.2 ‘
3.2n K,,“0 C.cos 2A
Ct 2L wd ~6 .
- —7; ( )(C sin 2% + 7U-—_TEF§__> . (64

Eus. {53) and (64) express thLe static and dynamic pitch-
ing moment deriva‘ives for the general turbulent boundary
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layer casc with the additi onal assumption of negligibly
small nonlinear terms in a, - They are similar, in form,
to the correspending equations for the laminar case, i.e.,
Eqs. {57) and (58). For the same geometric configuration,
the pitching derivatives will differ in magnitude for the
two cases on account of the differerces in the valuesof

K}L and Klt > the constant multiplying factors, the ex-
ponents of 6 and the coefficients C3 5 C4 5 C5 , and C6'

3.4.3 Relations Between the Dynamic and Static Abla-
tion Derivatives

It is useful to examine the relationship vetween the
dynamic and the static pitching derivatives produced by
abiation. The values of C, (B)/CM (B) may be calculated

a

by dividing Eq. (58) by Eg. ?57) for the laminar case and
Eq. (64) by Eq. (63) for the turbulent case. The result-
ing expressions for the gener 21 case are somewhat unwieldy.
However, v.der rather realistic conditions when KI is
small (say, of order IO-]) and the reduced frequency %ﬁ

~

is low (say, of order 10-3) then the terms ‘n K,“ produce
a relatively negligible contribution and tue relations may
be approximated as follows:

For the laminar case:

(B,4) ———TMK“G (65)
Ciy 1) o - C, coshA 65
Ma ’ tan“ 8 3
and
4n K,, 6 CrcoSA
AL Y TR PSR B :
Cy (Bat) ~ - —7= (G3){(Casinh + $ ) - (66)

q an~ 8
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fn a similar way, for the turbulent case

5.2 K]te"G
Cy (B,t) ~ - > Cy cosh (67)
a tan~ 9
and
. 5.21 Klt 61'6 2 ' wd C5cosk
ch(a,t) o (E5)(Cosinh + 9f —=—5-) . (68)

Then, for both the laminar and turbulent cases:

c,, (B)
-c—-‘lmM 20 o0+ ‘s (69)
M ~ wd C3fan6 b ’

a

If, in addition, the following inequality applies

2 tan Al 5> e

wd 3an
then, a very simple relationship between the dynamic and
the static pitching derivatives is obtained, namely

¢, ()

2U
-C;g-mmw—d' tan A . (70)

a

Eq. (70) illustrates a characteristic effect of the phase-
shift angle A . For a phasc lag (A < Q) with 0 < |A] <-g ,
the effect of ablation on the dynamic derivative will be

of opposite sign to that on the static derivative. It also
shows that the quantity %% » the invorse of the reduced
Trequency, acts as an "amplification factor" for the dy-

namic derivative with respect to the static one.
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3.4.4 Relations Between the Ablating and Nonablating
Pitching Moment Derivatives

It is of interest to reiate, parametrically, the
static and dynamic pitching moment derivatives contri-
buted by ablation to the corresponding values without
ablation. Attention will be restricted to the special
cases given bv Eqs. (65 - 68). The small contributions
of the spherical nose to Cy (o) and CM (o) will not

a q
be considered. From Eqs. (65) and (13) one obtains, for
the laminar case:

c, (B8,1)
Ma C3
—CM—(—O—)-—= 2 K]LCOS 7\-C-]— . (71)
a

For the turbulent case, Eqs. (67) and (13) yield

e = 2.6 K]te’scos xfi : (72)
My, ° ]

Equations (71) and (72) iliustrate the relative importance
of the different factors contributing to the fractional
static pitching moment derivatives, ramely, the quantity
K] » the geometric coefficients C3 and C] s the cone
angle 6 and cosA . For small phase-shifts, of the
order of +10 degrees, cosh ~ 1 so that the fractional
static moment derivative is insensitive to phase-shifts

és regards both magnitude and direction. Further, since
~§% may be positive or negative depending on the ablation
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pomp———— T L L

and cone gecmetries, the ablation contribution to CM
namely, C,, (B) may be stabilizing or destabilizing.
a

Turning our attention to the fractional dynamic pitch-
ing derivatives, then Eqs. (66) and (14) give

_ . 2Uy (. "3 , wd cosA 5
—C'a—'(w-— Z KILtanG(wd)<S|n7\t£+-2-Umt;> (73)
q
Eqs. (68) and (14) yield for the turbulent case:
u Pt 6, o.2U ¢3 , wd ¢
_ . 2Uy /.. 3 ., wd cosA “5
—Ca—ro—)— = 2.6 Klte tans(wd)(sm?\ 3—2- + 20 Tar? -C—z-) (74)
2 q
-
1 Egqs. (73) and (74) show that the fractional dynamic pitch-

ing moment derivative depends, as before, on the quantity

K and also on 86 , sinA , coSA , 2U , and the ratios
] wd

C C
3 5

B
2 2

If the quantities involving %% in Eas. (73) and

(74) are negligibly small, relative to the other term
2

and if we note that K] s 6, ﬁ% s, and C2 are nonnega-
tive, it becomes apparent that tie dynamic derivative
due to ablation, Cy (B) , will be of the same polarity
as Cy {o) , i.e., damping whenever C3sin% is positive.

q

Therefore, positive values of C3 coupled with phase

lead or negative values of C3 coupled with phase lag will
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produce the same result, namely, an increased damping.
On the other hand, when C3 and sinA are of opposite
sign, the dynamic effect of ablation will be destabiliz~
ing.

3.5 Effect of Ablation on the Local Friction Coefficient

The gases generated as a result of ablation and in-
jected into the boundary layer may produce a significantly
large change of the local skin friction coefficient. This,
in turn, produces a correspording change in the pitching
moment coefficient and the pitching moment derivatives,
designated here by CM(f) s CMa(f) , and CMq(f)

The dependence of the local skin ‘riction coefficient
on ablation or blowing will involve the local mass transfer
parameter as well as other flow characteristics such as the
wall to free stream temperature ratio and the mol cular
weight ratio of the free stream and vaporized gases.

Li and Gross]]

have proposed the following expres-
sion for a compressible, laminar boundary layer with blow-

ing or suction

B A (;ﬂ)x (75)
(¢]

where Cf and Cf are the skin friction coefficients.
© with and without blowing, respectively;

A is a positive quantity, fixed for a given fluid;
B and T0 denote the uniform w.11 temperature and
the free stream stagnation temperature,

respectively;
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and K is a nondimensional mass transfer parameter such
that K < 0 fcr blowing and K > 0 for suction.

Gross, Hartnett, Masson and Gazley]2 have examined
the available analyses of the binary, laminar boundary
layer and concluded that, for engineering design calcula-
tions, the skin friction, in the presence of mass transfer
cooling with a foreign gas, may be approximated quite well
by the axpression

C m_\1/3 Re_
f _ _a X :
T 1 - 2.08 <"‘c> o = (76]
)
Ma
where o represents the ratio of the molescular weights
C for air and the coolant gas;
Fe is the nondimensional mass transfer parameter;
ReX is the local Reynolds number
and C* is the Chapman-Rubesin parameter, calculated

at the reference temperature.

For the turbulent boundary layer case, Danberg,
Winkler and Chang]8 obtained experimental results for
the effects of air transpiration and wall temperature
on skin friction on a flat plate at a Mach pumber of
6.7 indicating a strong dependence of the skin friction

coefficient on mass transfer even for the relatively

low mass transfer coefficients, Fe = .0025 . Testsen-
compassing the fellowing range of parameters
2Fe Cf
OSFGS.OOZS; OS-C-_—<4; ]Zf_—>°2
To fo
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yielded the following simple expression:

Cf 2Fe
T;T-= ] - .22 t?— . (77)
0 (o)

Equations (75), (76), and (77) are all of the generalized
type:

-

=1 - ufF (78,

-~
(@]

|

(41

where the nondimensional factor x is determined by the
relevant parameters of the problem at hand. |t replaces
the quantity A(Tw> cf Eq. (75), the more general quan-
tity .T;

m_\ 1/
2.os(ai)] 3/ x

c c*

4

PN

of E  (76) or the quantity
turbuicnt boundary layer case. o

of Eq. (77) for the

-7

If one refers to Figure 1 and focuses attention on
the elementai normal and axial forces due to friction,
dN(f) and dX{f) , respectively, acting on an element
of surface, dS , on the cone, one may write

dN(f) = q, C; sin® singp dS
and

dX(f) = q, C¢ cos@ dS
where q = 1/2 peue2
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3.6 Pitching Moment Derivatives Due to Changes in Skin

Friction

The elemental pitching moment, dM({f) , about the
pivotal axis at X, can be expressed by

dM{f) = dX{f) r sinp - dN(f} {x-x_) ; 179)

Noting that r = x tan8 and dS = -9@dx _ X 5inf dodx
cos8 ro§26

then, by substituting for dX{f) , dN{f) , r and dS in
Eq. (75) and simplifying, there is obtained

dM{f) = Q, tan?

8 CfxxO sing dpdx
The corresponding pitching moment due to fricticn, M(f) ,
is obtained by integrationr over the cone surface

L /2

C.sing xx_ dedx
L]J-n/Z f °

L /2 .
M{f) = ZJ J dM{f) dedx = 2q tanzej
L, -n/2 €

(80)

When we introduce, as before, the nondimensional quanti-
ties x , ;o s E] » use the cone base area Ag and base
diameter d as reference area and moment arm, respectively,
and refer the moment ccefficient to the firree stiream dy-

namic pressure, g, = 1/2 memZ ; then the moment coeffi-
cient due to friction will be given by
_ 1 /2
M(7) e oo . -
Cylf) = — = . C, XX_ sing dpdx . (81)
M quBd Q. mtand JL J—n/Z f 0
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By virtue of Eq. (81), the pitching moment coefficient due
te friction can be calculated once tnhe functional relation
between the local skin friction coefficient, Cf » end the
variables ¢ and x is known. Equation (78) permits the
contribution to the local skin fricticn due to ablation,
designated here by ACf to be written as follows:

6 =C.-C. =-nF_C (82)

f f f

o} 0

The corresponding pitching moment coefficient, CM(f)
mey be obtained by means of Eq. (81) but with &C. in-

stead of Cf and with the iimits of integration of «x
determincd by the ablation region. Hence

( qe x2rn/2 - . -
CM f) = -'E:ETEF@ ilJ-n/°n FeCfox X, siro dep dx . (83)

L

In Eq. {83), » and C. are independent of the angle
o

¢ so that one may write

Cy (f) —-—{-—gqe fx2 C, % X jnh F sing dp dX (84)
= - o X X sing do dx .
M g mtan X, fo o] -n/2 e

'f we use for F_ the expression obtained from Egs. (36)
and {40), namely

P
K]emymx el%
Fe =3

quIGmeik 2 _Wpo /2 -
CM(f) = - T TEne J‘__ nC,. x Xs) y 'sing dp dx . (85)
' ¢05 x; o -11/2
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We restrict consideration to the case |—&
use the binomial series expansion

A ST sCHliay
n=(C

Considering first the last integral in Eq. {85):

/2 o a . n
_ 110 My (e . n+ ]
i, = j_r/z}: 0" (0 (52) (sing)™ ! gy
n=0
It will vanish for zero and even values of n whils

for odd values, it yields

273 G @ gt

By substitution into Eq. (85) there is obtained the follow-

ing general expression for the pitching moment contribu-
tion due to friction

K. 8" iN X

q 2 1+p a a 3
- e 1" ° x x|-D_e_ m 3 (e} _
Culf) = - 32 <ters “r -2 (D359
l
[o S
m 5 \ e b o
3.6.1 Laminar Case
For the laminar toundary layer csse, m = 1 and oenly

the first term inside the square brackets remains so that
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v R
(Fa) < dehe 2 R
Culfor) = soatans Jg mCr X X% el
] s

|f one uses for ny the very general expression, derived
from £Eqs. (76) and (78), namely

(88)

= 2.08 (TE)I/B’JFE;—
m ST

and, for Cf the general expression given in Fefer-
0,4
ence 44 modified to apply to the case of the cone, i.e.,

1+e
2

C, =43 x —-0644 ( ) (89)

€
0,4 .

o 1+

where the subscripts « and e denote the reference
tempereture and gas temoerature at the edge of the
boundary layer, respectively, and € denotes the ex-
ponent in visccsity power-lew relationshipc. Then, by
combining Eqs. (88) and (89), it is agparent that the

prcduct KLCf will not invoive the local Reynclds'
0,4

numter and may therefore be taken outside the integral
sign. Therefore, after using Eq. (4) for a, and the

abbreviation, Ky, = nLCfO L Eq. (87) becomes:
3

i X _l+p_ qd (x- x )
I_ X xo[a + =grens 9% - (90)

& tan9

a, K Kyp @

CM(f’L) = q, 2atanf
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_24p _ 24p
X - X
o _ (2 ! =
Let Cq = ( s )xo (91)
and
_ 3vp _ C4p _24p 24p
X - X x - X 2
~ _ (72 ] = 2 ] - .
-8 ( 3+ p )xo ( 2 + p )xo ’ (92)

These two coafficients are determin
conditions and are therefore consta
tion.

After integrat on of Eq. (90)
of the coefficients C7 and C8 ’

4 KitKoyp

_ _e i A
Culfot) = 32 mrarg ¢ L® C7 ¥ 7w
After using the relations e'x = ¢Oo
in Eq. (93) and separating
nary parts, the follcowing expressio
moment coefficient:

g = iwa

ed by purely geometric
nt for a given configura=-

and the introduction
there is obtained

o e (93!

an0

sAN + i s:nA and
the real and imagi-
n is obtained for tne

qg K, K -
; __e 1424 . _ __wd .
Culft) = 7atans [a(c; cos - yiang Cg sim\) +
C, cosA
d (78 2U .
+ 5 e+ g3 o)) (94)

The pitc ing moment derivatives due

to the frictional

effects of abiation readily follow from Eaq. (9¢) by ep-

propriate differentiation

A, MU0 i
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q K,,K C,sinA
_ _e 14 24 _wd 8
Cy, | f4) = € matans (&7 <osh - 50 —tame) (95)
and
K, K Cqcosh-
_ e 14 24 wd “8
Cy (T:4) = 38 motene log) [C7 sinn + Sty ] - (96)

3.6.

N

Turbulent Case

For the turbulent boundary layer case, m = 1.6 and
the tinomial coefficients in Eq. (86) give

m= 1.6 ; (g) = -.064 ; and (g) = -.0108

By substitution of the 2 values intoEq. (86! there is

obtaired
L K0t rxz l4p_ .
Cylfst) = - """'FEH‘G ) K, X xo[-.s a +
|
a 2 a 4.
(_e _e >
.024( ) + .003 (e ) de . (97)

Unlike the laminar case, the moment coefficient produced
by turbulent friction is not linear in a, However,

for |3-! < 1, the nonlinear terms are quite small so
that only the first term inside the square bracket of

Eq. (97) need be retained. Noting also that the quantity
K2t is independent of X , then after simpiificat on and
integration of Eg. (97) and the introduction of the coef-
ficients C7 and C8 » there is obtained:
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.6
q K..K,, @
Cylf,t) = .8 =2 1t 2t

2t e e s ) . (os)

Following the procedure described earlier to resolve Eq.
(94) into its real and imaginary pirts yields the follow-

ing expression for the turbulent, frictional pitching
moment coefficients:

q K. K,, 06 CnasinA
Cylfstd = ;ttgrtm [e(c; cosh - 5§ <)
g (_{_Tw“ P2 sim)] (99)

The corresponding pitcting moment derivatives will be

.6 .
q. K,..K,,8 Cosini

_ de "1th2t - _ wd ”8 \
Oy, (Tt) = -8 & i (cy cosr - 3 1) (100)
and

c 6
8 q k,,K .8 C.ccsA

_ e it'2t? 12U, wd °8

CMq(f’t) T Ta q, tan® (wd![c7 Sind + 57 47 ] (101)

3.6.3 Relc.ion Between the Dynamic 2nd Static Fric-
tional Pitching Moment Derivatives

The relation between the dynamic and the static
derivalives coniributed by frictional effects may be
calculated from Eas. (96) and (95) for the leminar case
and Eqs. (101, and (100) for the turbulent case. In
general, the following inequality holds:

l2Utan6 Cg sinA| << |C; cosh|
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Therefore, Eqs. (96) and (95) and also Egs. (101) and
(100) yield

c, (f)

4] 8 /
q‘q'm = wd tan)\+m—é 0 \]02)
a

Fq. {102) is valid for both the laminar and turbulent
cases; it is similar, in form, to Eq. (69) but with

8 . S
f; replacing f;

With the further restriction that
~ C

U

l:)d tan)\l >> lC‘7fgn§l

Then, the very simple relationship between the dynamic
and the static pitching deriva.ives found to apply to
the inviscid effect is also valid, namely,

)
Cy (F)

tJTf—)-m-E)—ldJ tan?. . (103)
M

o
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4. AVERAGE HEAT AND MASS TRANSFER RATES

In Section 2, explicit expressions were given for
the local heat transfer on the cone surface, §lc) , for
both the laminar and turbulent boundary layer conditions.
Thrrough the ccncept of the effective heat of ablation,
Heff » the corresponding local rates of mass ablation,
mw are readily calculated:

e

eff

In order to calculate the overall rates of heat transfer
and mass ablation, Q(c) and Mw , rewpeciively, it is
only necessary to integrate the local values over the
ablating surface on the cone. Therefore

. X2 m/2 :
Qlc) = I 4(c)dS = 2J I §(c)x s;ne do dx (104)
S X, -w/?2 cos” 8
and
. X2 m/2 :
- J~ 5 dS = er JJT/ dilc)x smezdcp dx . (105)
W W X -n/2 Hoep cos® 8

By substituting the general expression for {§lc)
given by €q. (29) and introducing nondimensional quanti-
ties as before, there is obtained:

. /2 _I+p _
olc) = C 2i0? f | dop dx . (106)
cos —n/2
m mom aesinm
Noting that 4" = 8y where, as before y =1 - - 3

then, using the binomial series expansion, there is ob-
tecined from Eq. {104):
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. 24p 2.m/2 o 4p a_ n
dc) = 2P olsing MM (=2) (sing)" dpdk
’ cosze J jj /2 Z;O n"” 6 >ine e

(107)

The integrals ‘nvolving odd powers of sing will!
vanish for the present limits of & and the expansion
of Eq. (107) yields:

. 2+p _l+p a s
0lc) = 2L C29 SInGI ['rr + (gi)(_e_g) LLAS L )(T) -?.6 -"]dx

cos™ 9 Xy

(108)

4.1 Laminar Boundary Layer

For the iaminar case, m = 1 and Eq. (108) is readily
integrated and yields

: 2L2*Pc 0 sine 2 _lep
Q'L(C) = 2 'J‘_ X m dX
cos 9 X
_ 24p 24p
_ 21 L2+pCL9 sind (x2 - X \
60529 2 + p /
2 L2+pC£9 sing C,
= ; S (169)
cos 0 xo

The overall rate of mass ablation will be given by the
expression
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4.2 Turbulent Boundary Layer

For the turbulent boundary layer case, m

values of the binomial coefficients are:

(g) = .48 ; () = .0224

Eq. (108) then yields:

. 2m L2+pCt9] 6sune 2 l+p
Qt(c) = 2 J [l + .74(
cos” 6 X
a a 4
Since I——I < 1, the term involving 6?2)

(110)

= 1.6 . The

)+ 007( )
(111)

is negligiuly

small and will be deleted. Eq. (111) shows that the over-
all rate of heat transfer for the turbulent boundary layer

case involves some dependence on the angle

unlike the

laminar case as given by Eq. (109) which exhibits no such

dependence.

I¥ the following inequality holds:

|.24(%3)2| << 1, then

. 2 L2+pcte"6sine ,
cos~ 8 x0

-48-
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and the corresponding rate of mass ablation is given by

. 21 L2+pct6]'65ina

Wyt Hofe cos‘e

(o]
~

(112)

2
><|i
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5. [ILLUSTRATIVE EXAMPLE

In order to illustrate the application of the fore-
going analysis, a hypothetical body was chosen and the
flight configuration selected was such as to reproduce
the conditions typical of laminar and turbulent boundary
layers successively during the re-entry phase.

The heating rate experienced during re-entry depends
primarily on the time history of velocity, altitude, and
attitude. For the purpose of this example, attention is
focused primarily on the changes in the dynamic pitching
derivatives due to ablation and a simplified approach,
assuming constant missile parameters, is adopted. The
flight conditions are based on some assumed but repre-
sentative altitude, velocity, and oscillation conditions
rather than on a calculated trajectory involving continu-
ous changes in altitude, velocity and atmospheric condi-
tions.

The geometric characteristics of the hypothetical
re-entry body are as follows:

Length L = 10 feet
Cone Half-Angle 8 = 10°
Cone Base Radius rg = 1.745 feeat.

Bluntness ratios of & = 0 (pointed cone) and .2 are
considered. The center of gravity location io is

assumed to range between .3 and .8 with .1 intervals.
A ohase-shift angle of A = -.349 rad. (20° lag) is

assumed.
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5.1 Laminar Boundary Layer Case

The typical flying conditions chosen for this case
are:

Altitude h = 150,000 feet

Velocity U, = 20,000 fi/sec

Free Stream Density p_ = 3.05 x 107 siug/cu. ft.
Oscillation Frequency f = 3 cps

Initial Angle of Oscillation o = 5°

Velocity of Sound a, = 971 ft/sec

Ratio of Specific Heats y = 1.35 .

Calculations are made for three arbitrary ablation con-
figurations, namely, full length ablation (x, = [] ,
§2 = 1), ablation from the front half only (il =T, ,

“y = .5) and ablation from the rear half only (21 = .5,

x, = 1).

The value of the pressure correction factor n for
the present case as given by Eq. (2) is 1.057. The re-
sults of the calculations for the laminar boundary layer
case are illustrated in the following figures.

The geometric ablation coefficients, C3 , C4 5 C5 ,
and C6 ,» calculated for the three ablation configurations
ancd different pivotal axis location are illustrated in
Figures 6, 7, 8, and 9, respectively. It may be noted
that C3 and C, which are linear in §0 may be posi-
tive or negative whereas the parabolic coefficients Cg
and C6 are always positive. i
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The geometric coefficients associated with the fric-
tional effects are illustrated in Figures 10 and 11. Here,
the linear coefficient C7 is always positive while the
parabolic coefficient C8 may be positive or negative.
The static and dynamic derivatives due to ablation,

Cy (B) and Cy (B) are calculated from Eqs. (57) and
a q

"), respectively, for the three ablation configurations
‘ the results are illustrated in Figures 12 and 13. The
carvalations are made for a phenolic nylon ablator with
the following rather arbitrary assumptions:

Hys = 8000 BTU/1b
a=10
hw
'h_' = -2.
S

The calculated vaiue for KIL for this case was found
to be: KIL = .0157.
The static and dynamic derivatives due to friction,

Cy (f) and o (f) caiculated from Eqs. (93) and (94),
a q

respectively, are illustrated in Figures 14 anrd 15. For
these calculations, an arbitrary constant value of .44
was used for the quantity KZL ; it is based on Refer-
ence 18.

The resultant static and dynamic pitching moment
derivatives for the ablating cone are calculated by sum-
mation of the various contributions and the results of
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the summation are illustrated in Figure 16 for the static
derivative, CM and in Figuire 17 for the dynamic deriva-
tive, Cy -
q

The relationship tetween the ablating and nonablating
dynamic derivatives, as given by the simplified Eq. (73),
is illustrated in Figure 18. It is noteworthy that, for
typical location of the pivotal axis, say, Qo = .65,
full length ablation on the rointed cone contributes a

dynamic pitching derivative, CM (B) of the same sign and

about the same avplitude as the aerodynamic damping deriva-
tive. Forward and aft ablation will contribute dynamic
derivatives of magnitudes iwo to three times the nonabla-
tion value and such that forward ablation increases the
dynamic damping whi'le aft ablation destabilizes the oscil-
lation.

The relative effect of the ccntribution of friction,
as modified by ablation, to the dynamic pitch demping
derivative, i.e., the ratio C (f)/CM (o) was calculated

from Eq. {102) and its approximate for:, Eq. (103), and the
results are illustrated in Figure 19. It is apparent that
these contributions have the same sign as the nonablation
dynamic derivative, i.e., they are always damping. For

the present example and typical pivctal axis location, the
cortributions range between 10 and 30 percent for the dif-
ferent ablation configurations.

It is instructive to examine, in turn, the effects
of changes in the frequency of oscillation, f , or in the
amplitude of the phase lag, A , on the resultant dynamic

derivative, CM . Finure 20 illustrates the results of
q
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calculations with the three chosen ablation configura-
tions and the same phase lag of 20° but with assumed
oscillation frequencics of 2, 3, 5, and 10 cycles per
second. The change of frequency alters the slope of
the lines for C,, versus io and the lower the fre-

q
quency, the steeper the lines.

Figure 21 shows the effects of changing the phase
lag angle while maintaining all the other factors con-
stant. Here,again, the effect of increasing the phase
lag is to steepen the slope of the lines of CM versus
X q

0

Figures 2C and 21 show a striking similarity in the
variation of the resultant dynamic derivative for the
case of a fixed phase lag, (A = -20°) with different fre-
quencies (f = 2 to 10 cps) and that of a fixed frequency
(f = 3 cps) and varying phase lag (A = -5 to -40 degrees).
This is due to the fact that, for the present example,
the contribution of ablation to the dynamic derivative
is essentially i.. direct proportion to (sin2»}/f , all
nther factors remaining unchanged.

5.2 Turbulent Bou:dary Layer Case

The same geometric ablation configurations were
used and the representative flying conditions selected
for this case were:

Altitude h = 100,000 ft

Velocity U, "= 17,500 ft/sec
Free Stream Density p_ = 3.31 x 107° slug/cu. ft

=54~
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Oscillation Frequency f = 3 cps
Initial Angle of Oscillation a = 5°
Velocity of Sound a, = 971 ft/sec
Ratio of Specific Heats y = 1.35.

The same values for H_.. , a ., hw/hs and K, were
used to afford a simple comparison even though these
values may not be equally realistic for both laminar
and turbulent boundary layers.

The value of the pressure correction factor, nn ,
calculated for this case was 1.063.

The geometric coefficients C through C8 will

be numerically a little different ?rom the corresponding
values for *he laminar case because of the different

value of the exponent p being -.2 inst2ad of ~.5 .

The variation of these coeffici nts with Eo will have
the same general characteristics as their laminar counter-
parts and will not be given in detail. The static and

dynamic derivatives due to ablation, C, (B) and Cy (B)
a

calculated from Eqs. (63) and (64), respectively, are
illustrated in Figures 22 and 23. The calculated value
for Klt was found to be .0450. The dynamic derivative
due to friction, C, {(f) calculated from Eq. (101}, is

illustrated in Figure 24.

The resultant dynamic pitching derivative is illus-
trated in Figure 25, while Figures 26 and 27 present the
variation of the ratios of C (5)/CM (o) and C. (f)/CM (o)

with ;o for all three abliation configurations. These figures
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exhibit the same general characteristics as for the lami-
nar case. There is, however, a significant difference

for the zase of full length ablation. The contribution

of ablation to the dynamic deirivative tends to destabilize
the vscillation for values of §° below .65 for the
pointed case compared to .6 for the laminar case. The
practical significance of this shift is discussed in the
following paragraph.

Figures 28 and 29 provide a graphic comparison of
the resultant static and dynamic derivatives; respectively,
calculated for the three different ablation configurations
on the pointed cone for tne two flight cases which illus-
trate the laminar and turbulent boundary layer conditions.
From Figure 28, it is apparent that at any specified value
of §° , the differences in the value of the resultant
static derivatives for the laminar and turbulent flow con-
ditions or for different ablation configurations are quite
small. Figure 29, on the othaer hand, illustrates very
significant differences in the relationships between the
resultant dynamic derivatives CM and iu for the lami-

nar and turbulent boundary layer cases. Specifically,
with full length ablation, the pointed cone is dynamically
stable for X > .56 for the laminar case and Xo 2 .61
for the turbulent case. In tnis practically impurtant
range of center of gravity location, the resultant dy-
namic pitching moment cerivatives will have different
signs depending on the type of boundary ‘ayer. This
feature may have far-reaching consequences for conical
vehicles re-entering the atmosphere. At high altitudes
of the order of 150,000 feet and flying speeds of 20,000
ft/sec, the ambient conditions will be such that the
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unit Revnolds number, Re/ft » Will be ahout 1.5 x 105 .
The boundary layer is laminar and the resultant dynamic
derivative will remain negative, i.e., dynamiczlly stable.
t lower altitudes of about 100,000 feet and air speeds
of say, 17,500 ft/sec, the unit Reynolds number is abrut
2 x 10° so that the boundary layer becumes turbulent,
2xcept near the nose, ana the dynamic derivative becomes
Positive sc that the vehicle's oscillations will diverge.
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6. SUMMARY

A simple analytical method has been presented which
permits the calculation of the hypersonic static arnd dy-
namic pitching moment derivatives for slender, fointed,
or siightly blunted cones performing si.agle-degree-of-
freedom, small-angle oscillaticns about the center of
gravity, taking into account the effects of ablation
over arbitrary portions of the cone surface. The analy-
sis is based on Newton's Impac! Theory for hypeisonic
flow and is restricted to considarations ot ri¢id body
motions at low reduced frequencies. QCuasi-steady condi-
tions are postulated.

The resultant static and dynamic derivatives are
obtained by adding to the nonablating derivatives, sep-
arate additional contributions due to local mass trans-
fer effects and to changes in the local skin friction
resulting from the ablation process.

The iocal heat iransfer rates and skin friction co-
efficients are obtained from classical flat plate results
appropriately modified to account for the local effective
angle of attack and the conical flow cunditions. The con-
cept of an "effective heat of ablation” is zpplied to re-
late the local heat and mass transfer rates.

The effects of the ablation geometry are conveni-
ently expressed in the form of geometric coefficients
which have the same general characieristics but differ-
ent numericai values for the laminar and turbulent cases.
The differences result from different values of two
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characteristic parameters p and m . The first param-
eter, p , controls the longitudinal distribution of the
ablation intensity and appropriate values for the laminar
case are ~.5 and for the turbulent case, -.2. The second
parameter, m , controls the variation of the ablation
intensity with the effective local deflection, and it is
shown that values of m= 1 and 1.6 are appropriate for
the laminar and turbulent cases, respectively.

An arbitrary but constant y“ase-shift between the
oscillation angle, @ , and the corresponding ablation
effect is assumed. The determination of tne appropriate
phase angle in a particular case would require a detailed
analysis involving considerations of unsteady boundary
layer, a fluctuating heat input, and thermal diffusivity
characteristics. Such an analysis was not attempted and
an arbitrary phase lag cf 20 degrees was assumed for the
two examples used to illustrate the application of the
method to the laminar and turbulent boundary layer condi-
tions. .Some charactieristic features of the effects of
ablation in these two cases are pointed out and the re-
sults of a parametric study showing the individual effects
of a change of phase-lag angle or oscillation frequency
are illustrated.
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\

SYMBQLS

Area of ccne “-ase

Proportionality factor, relating the flow
deflection prcduced by ablation, B , to
the mass injection parameter, F_ (Eq. 38)

Pole

Abbreviation for

Pe e

Coefficient relating the local rate of
convective heat transfer, § , to the
local angle, A and Xx coordinate
(Eq. 29)

Chapman-Rubesin paramcter, calculated at
the reference temperature

Constant coefficients, determined by the
cone geometry (Eqs. 11 and 12}

Constant coefficients soecified by the
cone and ablation geometry (Egs. 51,
52, 53, and 54)

Constant coefficients determined by the
cone and ablation geomeiry (Eqs. 91 and
92)

Local skin friction coefficient

Local skin friction coefficient without
ablation

Fitching moment coefficient, based on AB
and d

Static pitching moment derivative, per

aC
radian(=-§;M)

Pitching derivative due to

acM

(='g('3-5)

qQ , per radian
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. e p-pw
Prassure coefficient (= i >
Specific heat (BTU/1b-°R)
Cone base diameter

Nondimensional mass injection parameters

. Py Vw PyVy .
given by R and .0’ respectively
ee (-}

Circular frequency, cps
Effective heat of ablation (BTU/1b)
Enthalpy {BTU/1b)

Abbreviation for integral
Nondimernzional inass transfer parameter
(Eq. 75) .

abCL

Abbreviation for the quantity T -
efflo ®

Nondimensional factor, appearing in Eq. 90,
relating the local skin friction coeffi-
cient to the mass injection parameter, F

Length of the pointed cone

hxial distances from the cone apex to the
nose, cone shoulder and center of spheri-

e

cal cap, respectively (Figure 1)
Mach number or pitching moment

Rate of ablation for the entire body
(1b/sec)
Positive real quantity, not necessarily
an integer used ac an exponent to the
angle & (Eq. 29)
Molecular weight of air and coolant gas,
respectively
Local rate of ablation, i, = p v, (10/sq ft-sec)
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n Integers, used in binomial series expansion
p Static pressure or exponent expressing the
x-wise variation of ablation or friction
) effects
Heat flux for =ntire body (BTU/sec)
q Dynamic pressure (=-% pU2) s psf, or

angular velocity, radian per second
Local rate of convective heat transfer
(BTU/sq ft-sec)
Re Reynolds' number

0

r Radius or cylindrical polar coordinate

N Radius of spherical nose

Surface area

Distance along conical surface

Period of oscillation, sacends

Time, cecnnds

Stream velocity, ft/sec

Normal velocity, ft/sec

Xy¥Ys2 Cartesian coordinates with'respect tc body
axes with origin at the cone apex

X Distance from the origin to the axis of

< C o+~ 4 0 W

oscillation
X 9% Coordinates of the leading and trailing
edges of the ablating region, respectively
a sing
Abbreviation for 1 = ~Zg—
Angle of attack, radians
Initial angular displacement, radians

R R R <

Fffective angle of attack to(accoun% for
. . . oo Qlx - x
pitching velocity (— a -+ --U:-_Q-) ,
racians
B Local flow deflection inducad by ablation,
radians
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Ratio of specific hects

Net local deflection from the free stream
direction, for the oscillating cone,
radiars

doundaryv layer displacemen. thickness

Nondimensional factor relating the change
in iocal skin friction coefficient to the
mass transfer parameter (Eg. 7R}

Pressure correction factor to improve the
Newtonian value (Eg. 2)

Cone half-angle, radians

Phase-snift angle, radians

Biuntness parameter (=‘:§3

rg

Fluid mass density, sluas per cubic foot

For s. ation

Altituge density ratio

Cylincrical polar coordinate

Angular frequency of cscil,ation, radians
ner second

Air

Refers to cone base

Refers to coolant gas

~t edge of boundary layer

Laminar

Refers to the spherical nose oi the cone
Without ablation

Indicates partial differentiation wit!

respect to -%&—
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s Stagnation

t Turbulent

w Conditions at the wall surface

a Indicates partial differentiation with
respect to -~ngle a

@ Free stream corditions

Superscripts

() Value for the pointed cone
. Valve calculated at the reference temperature

Additional Symbols

--(c) Contribution of the cone surface

--(f) Contribution due to fricticn

--(F.P.) Flat plate case

--(¢) Laminar case

-=(N) Contribution of the cone's spherical nose
--(o) Value without ablation

--(t) Turbulent case

--{B) Contribution due to ablation

A-5
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APPEND |3 B

DERIVATION OF SIMPLIFIED EXPRESSIONS
FOR THE
RATES OF HEAT TRANSFER TO A FLAT PLATE
AT
SMALL ANGLES OF ATTACK
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1. Laminar Boundarv Layer

The expression

sina(cosa).
[.186 + .54 .314(sina) ]

Rs

which appears in Eq. {19) may be simplified for small
values of @ by using the expansio-

sina=a--3-1-+-

and

cosansl--g'-r+%-r-.

and applying the binomial theorem, neglecting terms in
a4 as follows:

(cos(a))]/2 = (l - %; ---)]/2 =] - %-azo--

Then, the expression Bl yields

3 2
o o5 (- F) o
(186 + .5 7% + .314(a - &)

S
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S 43
a - a
81 w 12

[.186 + .sgf + .314 az(l "%T) ]

, h
(.186 + .5 Ff)

If ore neglects terms in a3 then
Bl g

(-186 + .5 %f)

/4

2. Turbulent Boundary Layer

The expression

(sina)i's(cosa)'8

h _ L ]
[L197 4 .52+ .303(sina)?]
S

va

B-2

(B2)



a——— T it

FLUIDYNE ENGINEERING CORPORATION

which appears in Eq. (24) can be simplified by a similar
procedure as follows:

[.197 + .5-:-:+ .303(a- %?) ]

2.

“ 81 - 1.6 51)(1 - 3 o?)
h 2 2+
[.197 + .s-h—‘;'+ .303 a2(1 - -gir) ]
a! 6(1 -~ié§ az) (l - .4 az)
) o 2 2"
(.197+.5ﬁ) [1+—30832 o (1-%‘-)]
. 197 + .5'5";

If, as before, one neglects terms of order a3 or higher,
then

1.6
B2 s 2

7
(197 + .5 'h—:>

B-3
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